Regression Verification: Status Report

Presentation by Dennis Felsing within the Projektgruppe Formale Methoden der Softwareentwicklung

2013-12-11
How to prevent regressions in software development?
Formal Verification

Formally prove correctness of software
⇒ Requires formal specification

Regression Testing

Discover new bugs by testing for them
⇒ Requires test cases
Introduction

Formal Verification

Formally prove correctness of software
⇒ Requires formal specification

Regression Testing

Discover new bugs by testing for them
⇒ Requires test cases

Regression Verification

Formally prove there are no new bugs
Project Objectives

1. Develop a tool for Regression Verification for recursive programs in a simple imperative programming language
2. Case study to evaluate how well our approaches work for different examples in comparison to other systems
3. Extend the tool to work with more programs and to be more general
Preliminary Considerations I

Unbounded Integers vs Bit Vectors

- Unbounded Integers don’t overflow
- Bit Vectors can be limited to simplify the problem
- **Solution:** Support both:
 - Proofs are supposed to be over unbounded Integers
 - For comparison Bit Vectors can also be used
Division by 0

In Z3, division by zero is allowed, but the result is not specified. Division is not a partial function. Actually, in Z3 all functions are total, although the result may be underspecified in some cases like division by zero.

- **Possible Solutions:**
 - Check that there are no divisions by 0
 - It could be verified that the result is independent of the result of division by 0
Array Access over Boundaries

- Arrays have infinite size in Z3
- Possibility: Check array boundaries on every access
- Programs can be proven to honor array boundaries
- **Solution:** Assume programs have been proven to honor array boundaries
Tool for Regression Verification

Overview

Function \(f \) (val \(n; \) ret \(r \))

Function \(f \) without recursions

Static Single Assignment \(S_f \)

Function \(g \) (val \(x; \) ret \(y \))

Function \(g \) without recursions

Static Single Assignment \(S_g \)

\((n = x \land S_f \land S_g) \rightarrow r = y\)

SMT Solver

Valid / Invalid
Tool for Regression Verification

Formally prove there are no new bugs

- Goal: Proving the equivalence of two closely related programs
- No formal specification or test cases required
- Instead use old program version
- Make use of similarity between programs
Tool for Regression Verification

Formally prove there are no new bugs

- Goal: Proving the equivalence of two closely related programs
- No formal specification or test cases required
- Instead use old program version
- Make use of similarity between programs

```c
int gcd1(int a, int b) {
    int g = 0;
    if (b == 0) {
        g = a;
    } else {
        a = a % b;
        g = gcd1(b, a);
    }
    return g;
}
```

```c
int gcd2(int x, int y) {
    int z = x;
    if (y > 0) {
        z = gcd2(y, z % y);
    }
    return z;
}
```
Uninterpreted Functions

Overview

Function f (val n; ret r)

Function g (val x; ret y)

Uninterpreted Functions

S_f

S_g

$(n = x \land S_f \land S_g) \rightarrow r = y$

Valid / Invalid

SMT Solver
Uninterpreted Functions

- Given the same inputs an **Uninterpreted Function** always returns the same outputs.
- Motivation: Proof by Induction, to prove $f(n) = g(n)$ assume $f(n-1) = g(n-1)$

```c
int gcd1(int a, int b) {
    int g = 0;
    if (b == 0) {
        g = a;
    } else {
        a = a % b;
        g = \text{U}(b, a);
    }
    return g;
}
```

```c
int gcd2(int x, int y) {
    int z = x;
    if (y > 0) {
        z = \text{U}(y, z \% y);
    }
    return z;
}
```
Conversion of Programs to Formulae

Overview

Function f (val n; ret r)

Function f without recursions

Static Single Assignment S_f

Function g (val x; ret y)

Function g without recursions

Static Single Assignment S_g

$(n = x \land S_f \land S_g) \rightarrow r = y$

SMT Solver

Valid / Invalid
Conversion of Programs to Formulae I

General idea

- Walk Abstract Syntax Tree of both programs
- Convert every SimPL construct to SMT formula:

 \[
 \text{int } x = y; \quad \Rightarrow \quad \text{declare-fun } x_0 () \text{ Int assert (} x_0 = y_i \}\]

 :

 \[
 \text{if } (y) \{/ \\
 x = b; \\
 \} \quad \text{else } \{/ \\
 x = c; \\
 \} \quad \Rightarrow \quad \text{assert (} x_i = b \}\text{ assert (} x_{(i+1)} = c \}\text{ assert (} x_{(i+2)} = (\text{ite y} \\
 x_i \ x_{(i+1)}) \}; \quad \text{Phi node}
 \]

- Use new variable for every assignment
Conversion of Programs to Formulae II

Regression Verification

• Uninterpreted Functions:

 \[\text{assert (forall ((u Int) (v Int) ((gcd1 u v) = (gcd2 u v))))} \]

• Proof \(f = g \):

 \[\text{assert (not (gcd1_result = gcd2_result))} \]
 \[\text{check-sat} \]
 \[\text{get-model} \]
 \[\text{exit} \]

\[\Rightarrow \text{Objective “Regression Verification proofs”: Done} \]
Case Study

Done

- Collect examples: Papers, Refactoring Rules, ...
- 51 program pairs so far

Planned

- Framework for testing them
- Check how well extensions work
- More (interesting) examples

⇒ Objective “Case Study”: Work in Progress
Convert Loops to Recursions

Idea

- Convert every loop to a new recursive function
- Handling multiple loop variables: Return a tuple

```c
while (x < 10) {
    y = y + x;
    x = x - 1;
    (x, y) = loop(x, y);
}
```

Initial work

- Added tuples to SimPL grammar and AST
Function Inlining

Idea

• Specify how often a function call is inlined:

\[y = f(x) \text{ inline 3;} \]

• Same for loops (converted to functions):

\[
\text{while } (x < y) \text{ inline 5 } \{
 z;

\}
\]

• Possibility later: Inlining strategies

Initial work

• Modified grammar to support inlining
Abstraction Refinement I

- Recursive Functions are the main problem
- Two ways of dealing with them:

Most general abstraction

- Classical Regression Verification approach
- Uninterpreted functions
- $\forall x : f(x) = g(x)$
- No further information about the functions

\Rightarrow Only works when the function bodies are equivalent
No abstraction

- Give recursive definition:

\[
\forall x. f(n) = \\
\text{let } r_0 = 0 \\
r_1 = n \\
r_2 = f(n-1) \\
r_3 = n + r_2 \\
r_4 = \text{ite}(n \leq 1, r_1, r_3) \\
in r_4
\]

- Experiments for a few simple functions

⇒ Only works when the function bodies differ for finite number of inputs
Abstraction Refinement III

Problem: Find an abstraction inbetween

CEGAR Loop

- Counter Example Guided Abstraction Refinement
- Start with simple over-approximation
- Extract patterns from counter examples
- Refine Abstraction
- Repeat if proof still fails
Problem: Find an abstraction inbetween

Horn Clauses

- $(p \land q \land \cdots \land t) \rightarrow u$
- Postcondition PC is true after recursive call
- $r = f(n) \rightarrow PC(n, r)$
- Solver figures out Postcondition on its own (e.g. using CEGAR)
Summary

Regression Verification

• Prove that two similar programs are equivalent
• Better chance of being adopted than Formal Verification
• More powerful than Regression Testing

Project Status

1. Develop Regression Verification tool:
 • Basic tool: **Done**
 • Loops to Recursions: **WIP**
 • Function Inlining: **WIP**

2. Case study to compare approaches: **WIP**

3. Extend tool: **Planning and Experimentation**